pw).
Первые два свойства расслоения имели, как оказалось, малое отношение к самому расслоения, они скорее описывали само общество и его группы. Поэтому далее обозначения (w
,n), (F,n) и F эквивалентны.
Из последних двух свойств расслоения следует вывод. Расслоение P
(w
) как функция множества w
представляет собой функционал от вероятностной (как, впрочем, и любой конечной) меры F множеств. Действительно, эта мера не меняется от перестановок и повторения. Наконец, объединение нескольких множеств можно отождествить с со смесью вероятностных мер каждого из них с вероятностями, пропорциональными их весам (числу элементов, доходам). Кажется очевидным, что при объединении различных по доходам множеств (групп) людей расслоение вновь получившегося общества будет не убывать, а увеличиваться
Условие 3 (монотонности)
. Значение функции J от смеси двух (или более) не одинаковых вероятностных мер не убывает по сравнению с ее значениями от любой из исходных.
Далее, наряду с уже введенным обозначением J(w
,n), будем использовать новое - J(F) (J(F,n)), где F вероятностная мера множества w
. Более того, для простоты, F - функция распределения) доходов, так как последняя показывает и величину дохода (точка роста) и численность людей получающих эти доходы (величина скачка в точке роста, умноженная на n) в обществе F и Fi в его группе i.
Свойствами монотонности и нормировки открывается вторая группа свойств расслоения, поскольку первые два свойства относились скорее к описанию характеристик общества, чем к его расслоению. В группе, состоящей из одного человека, имеющего какой-либо доход, расслоения нет, в полном соответствии с нашим представлением о расслоении. В группе, в которой все доходы входящих в нее людей делятся по мере надобности на каждого, по-видимому, расслоения также нет, как и в группе, где все люди имеют один и тот же доход. Функция, соответствующая показателю расслоения должна отражать и это.
Условие 4 (нормировки)
. Если функция распределения F вырождена, т.е. имеет скачек, равный 1 в какой-либо одной точке, то J(F)=0.
Действительно, можно предположить более простое: J(w
,1)=0. Тогда в силу условия повторения имеем при r=n условие нормировки 4. Примером группы, где суммарный доход распределяется по потребности (коммунистический принцип) может служить семья, домохозяйство, скит или монастырь, поэтому условие нормировки не представляется чем-то неожиданным или невозможным.
Теперь из условий 3 и 4 следует, что J(F,n)³0 для любых F. Если учесть ещё и условие 2, то получим, что число n в обозначениях J(F,n) можно опустить и писать просто J(F).
Свойство непрерывности. Может ли расслоение ярко выражено меняться при сравнительно малом изменении дохода в отдельной группе или у одного человека, которые в свою очередь несколько меняет вид функции распределения F? Ответ на этот вопрос ясен - расслоение при малом изменении дохода у кого-либо настолько незначительно, что не чувствуется. Таким же свойством должен обладать и показатель J(F). Отсюда следует, что показатель расслоения представляет собой функционал от функции распределения доходов.
Условие 5 (непрерывности)
. Функционал J(F) непрерывен.
Национально-смешанные браки являются важным каналом изменения этно-демографической структуры российского общества. Сами по себе такие браки не меняют численного соотношения контактирующих национальностей, однако дети из таких семей, выбирая себе национальную принадлежность одного из родителей, тем самым обрывают этническую линию другого.
Развод - обычно драма как минимум для одного из супругов и, безусловно, моральная и психологическая травма для ребёнка, имеющая далеко идущие последствия. Есть удачное сравнение развода с хирургической операцией - саму операцию обычно перенести проще, чем выздоровление, требующее значительных физических и моральных сил.