, а функцию от этого множества J(w
).
Условие 1 (симметрии)
. Функция J от множества доходов wможет быть показателем расслоения, когда она не зависит от их упорядочения.
Элементом множества w
может быть, конечно, не только доход, т.е. число, а целый набор, характеризующий благосостояние данного человека. Далее будет существенным лишь то, что в для каждого элемента определено понятие близости и, следовательно, понятие центра, т.е. элемента, не обязательно принадлежащего самому множеству w
, наиболее близкого ко всем точкам wi. Таким образом, само множество принадлежит пространству, в котором определена близость точек.
Наиболее часто в качестве центра используют среднее значение всех точек множества w
. Таким образом, для пространства, из которого взято множество, определены операции сложения и умножения на число. Более того, в частности, общество может состоять из нескольких групп - множеств, поэтому множества точек - групп могут быть объединены, т.е. в пространстве определена операция объединения множеств. Далее требования к пространству, к которому принадлежат точки – благосостояния отдельных людей - будут уточняться.
Свойство повторения. Допустим, что людей некоторого общества можно разбить по благосостоянию или доходам, эти два термина употребляются как синонимы, на две или более групп так, что каждая группа будет полным повторением и по числу и по благосостоянию людей некоторой исходной. Ясно, что при таком предположении расслоение всего общества и каждой его группы должно быть одним и тем же. Поэтому этому свойству неизменности при повторении, которым обладает само расслоение, должен удовлетворять и показатель.
Условие 2 (повторения)
. Функция от объединения r одинаковых множеств может быть показателем расслоения, если она инвариантна по отношению к умножению множества на число, J(rw
,rn)=J(w
,n) при r>0.
В последнем соотношении введено новое обозначение: w
i=rw
, если все w
i=w
. Кроме того, при обозначении функции был добавлен аргумент n, чтобы учесть вес множества. Весом каждого из объединяемых множеств, особенно в случае, когда количество элементов (людей) в них не равно друг другу, может служить, например, число точек во множестве (т.е. число людей в группе). Когда общество состоит из нескольких групп, численности которых ni, то величина ni может служить мерой группы.
В последнем случае мерой всего общества может служить n=S
ini. Теперь из условия повторения получается, что расслоение не зависит от количества людей, следовательно, и общество и его группы можно “стандартизовать”, разделив на их численность. Отсюда вытекает, что функция может не зависеть от n, но тогда вместо множества w
и его элементов wi следует использовать их меру, которой после стандартизации будет вероятностная. В этом случае мерой группы в обществе будет ni/n=li, мерой P(w
) элемента w во всем обществе будет смесь мер Pi(w
) всех составляющих его групп, т.е. P(w
)=S
iliPi(w
). Вместо вероятностной меры P далее почти всегда будет использоваться функция распределения F, так как пространство благосостояний (доходов) имеет отношение порядка p (<), т.е. F(w)=P(w
Национально-смешанные браки являются важным каналом изменения этно-демографической структуры российского общества. Сами по себе такие браки не меняют численного соотношения контактирующих национальностей, однако дети из таких семей, выбирая себе национальную принадлежность одного из родителей, тем самым обрывают этническую линию другого.
Развод - обычно драма как минимум для одного из супругов и, безусловно, моральная и психологическая травма для ребёнка, имеющая далеко идущие последствия. Есть удачное сравнение развода с хирургической операцией - саму операцию обычно перенести проще, чем выздоровление, требующее значительных физических и моральных сил.